#### Vision and Status of the IOC to FOC Process

#### **Optimizing Software Maintenance**

NOAA's Annual Climate Data Record Conference
July 31 through August 2, 2012

Bryant Cramer GST Consultant

## **CDR Lifecycle**





### **Optimizing Software Maintenance**

- Small, persistent changes in some Climate Variables require observation over several decades to achieve statistical significance (e.g. mean daily temperature)
- For these variables the long-term cost of software maintenance is expensive and likely becomes an issue
- Would optimizing software maintenance result in meaningful savings over the long-term?
- A spreadsheet model was developed based on experiences from the banking industry

#### Modeling Software Maintenance



## **Baseline Solution**



## **Optimized Software Maintenance**



### **Optimizing Software Maintenance**

- Our approach involves a prototyping effort to improve the maintenance of a typical CDR algorithm to test the concept
- Draft Coding Standards have been developed that reflect a high degree of software maintainability
- Software static analysis tools are used to characterize the algorithm and identify candidates for improved maintainability
- The task is coordinated with the PI's team
- Achieving good alignment with the Coding Standards potentially represents an important part of the transition from IOC to FOC

### Long-term Role of the PI's Team

- Software Maintenance Team and the PI's Team form a complementary relationship
- PI's Team continues to develop technical improvements to the algorithm
- Software Maintenance Team proceeds to improve maintainability
- The two teams continually coordinate their activities
- Software Maintenance Team adopts Pl's improvements as they mature and vice versa
- Both teams benefit from the exchange of information and products

## **Current Prototyping Task**

- Xuepeng (Tom) Zhao (NCDC) has developed an Aerosol Optical Thickness Climate Data Record (CDR) using the PATMOS-x Data Processing System
- PATMOS-x generates multiple products (cloud, aerosol, surface and radiometric) on the same grid using a common processing path
- PATMOS-x processes approximately 25 years of data from NOAA's Advanced Very High Resolution Radiometer (AVHRR) flown on the POES spacecraft
- The current task is to optimize the PATMOS-x algorithm for software maintenance that supports the Aerosol Optical Thickness CDR
- Current task started in February 2012 and will finish in April 2013

## Initial Results of Static Analysis

- PATMOS-x version used is dated January 11, 2012
- PATMOS-x has 483 subroutines involving 42,875 lines of executable code
- With all output files turned ON (except volcanic ash),
   PATMOS-x utilizes 193 subroutines involving 26,395 lines of executable code
- The size, cyclomatic complexity, and execution calls have been determined for each active (called) subroutine

#### **PATMOS Subroutines**

Distributed by Size (Lines of Code)



#### **PATMOS Subroutines**

#### Distributed by Cyclomatic Complexity



# PATMOS Subroutines Size vs Cyclomatic Complexity



## PATMOS Subroutines Execution Calls/Orbit Calculation



## Early Results of Static Analysis

|                                                          |         | Subroutines Excee                                        | ding Complexity and/or Size |               |                        |               |          |   |
|----------------------------------------------------------|---------|----------------------------------------------------------|-----------------------------|---------------|------------------------|---------------|----------|---|
| Subroutine Name                                          |         |                                                          | Cyclomatic Complexity       | Lines of Code | <b>Execution Calls</b> | Sorting Codes |          |   |
| Called Subroutines that exceed BOTH Complexity and Size: |         |                                                          |                             |               |                        |               |          |   |
| 1                                                        | 325     | PIXEL_COMMON:DESTROY_PIXEL_ARRAYS                        | 200                         | 546           | 1                      | 1             | 1        | 2 |
| 2                                                        | 366     | LEVEL2_ROUTINES:WRITE_PIXEL_HDF_RECORDS                  | 160                         | 2337          | 68                     | 1             | 1        | 2 |
| 3                                                        | 313     | LEVEL2_ROUTINES:DEFINE_HDF_FILE_STRUCTURES               | 160                         | 4047          | 1                      | 1             | 1        | 2 |
| 4                                                        | 299     | AVHRR_CALNAV_ROUTINES:READ_CLAVRXORB_COMMANDLINE_OPTIONS | 120                         | 344           | 1                      | 1             | 1        | 2 |
| 5                                                        | 351     | COMPILE_ASC_DES                                          | 112                         | 837           | 38                     | 1             | 1        | 2 |
| 6                                                        | 356     | AWG_CLOUD_HEIGHT:AWG_CLOUD_HEIGHT_ALGORITHM              | 111                         | 938           | 68                     | 1             | 1        | : |
| 7                                                        | 368     | NAIVE_BAYESIAN_CLOUD_MASK:CLOUD_MASK_NAIVE_BAYES         | 97                          | 421           | 68                     | 1             | 1        |   |
| 8                                                        | 393     | RT_UTILITIES:GET_PIXEL_NWP_RTM                           | 96                          | 895           | 68                     | 1             | 1        |   |
| 9                                                        | 367     | LEVEL3_ROUTINES:COMPILE_GRIDCELL_ARRAYS                  | 78                          | 404           | 68                     | 1             | 1        |   |
| 10                                                       | 324     | PIXEL_COMMON:CREATE_PIXEL_ARRAYS                         | 76                          | 1161          | 1                      | 1             | 1        |   |
| 11                                                       | 314     | LEVEL3_ROUTINES:COMPUTE_GRIDCELL_ARRAYS                  | 55                          | 505           | 1                      | 1             | 1        |   |
| 12                                                       | 373     | PIXEL_COMMON:RESET_PIXEL_ARRAYS_TO_MISSING               | 54                          | 299           | 68                     | 1             | 1        |   |
| 13                                                       | 449     | Conver                                                   | 36                          | 245           | 1892710                | 1             | 1        |   |
|                                                          |         |                                                          |                             |               | 1                      |               |          | 1 |
| led S                                                    | ubrouti | nes that exceed EITHER Complexity or Size:               |                             |               |                        |               |          |   |
| 14                                                       | 322     | NWP_COMMON:DESTROY_NWP_ARRAYS                            | 57                          | 58            | 1                      | <u>1</u>      | <u>0</u> |   |
| 15                                                       | 390     | PIXEL_ROUTINES:NORMALIZE_REFLECTANCES                    | 40                          | 93            | 68                     | <u>1</u>      | <u>0</u> |   |
| 16                                                       | 355     | AWG_CLOUD_DCOMP:AWG_CLOUD_DCOMP_ALGORITHM                | 35                          | 327           | 68                     | <u>0</u>      | <u>1</u> |   |
| 17                                                       | 320     | NCEP_REANALYSIS:READ_NCEP_REANALYSIS_DATA                | 35                          | 220           | 1                      | <u>0</u>      | <u>1</u> |   |
| 18                                                       | 424     | AVHRR_CALNAV_ROUTINES:COMPUTE_NEW_THERM_CAL_COEF         | 32                          | 248           | 13514                  | <u>0</u>      | <u>1</u> |   |
| 19                                                       | 465     | RT_UTILITIES:INTERP_RTM_KNOWING_Z_NEW                    | 27                          | 272           | 5519864                | <u>0</u>      | <u>1</u> |   |
| 20                                                       | 387     | PIXEL_ROUTINES:COMPUTE_SPATIAL_UNIFORMITY                | 17                          | 247           | 68                     | <u>0</u>      | <u>1</u> |   |
| 21                                                       | 470     | AWG_CLOUD_HEIGHT:COMPUTE_FORWARD_MODEL_AND_KERNEL        | 14                          | 224           | 8038080                | <u>0</u>      | <u>1</u> |   |
| 22                                                       | 460     | AWG_CLOUD_HEIGHT:SET_CLEAR_SKY_COVARIANCE_TERMS          | 7                           | 201           | 5519864                | <u>0</u>      | <u>1</u> |   |
| 23                                                       | 305     | CELL_HDF_ROUTINES_1:WRITE_GRIDCELL_DATA                  | 6                           | 1724          | 1                      | <u>0</u>      | <u>1</u> |   |
| 24                                                       | 315     | LEVEL3 ROUTINES:CREATE GRIDCELL ARRAYS                   | 1                           | 308           | 1                      | 0             | 1        |   |

#### **Next Steps**

- Identify the PATMOS-x subroutines required to support the Aerosol Optical Thickness algorithm
- Examine these subroutines for variances from the CDRP Coding Standards
- Identify the software changes required to meet the Coding Standards
- Prioritize these changes on the basis of the most costeffective contributions to long-term software maintenance
- Consider architectural changes to subroutines to reduce their size and to run more efficiently
- Prioritize all of these proposed changes into a single list
- Implementing these changes becomes the FY13 effort